Background: The incorporation of substances in nanocarriers can modulate and/or manage their delivery profiles (immediate or sustained) and permeation through skin. Consequently, drug nanencapsulation intended for topical treatment can reduce the systemic absorption of the substance.
Objective: To obtain and characterize vitamin K1-loaded lipid core nanocapsules as well as to determine whether the nanoencapsulation influences the skin permeation of this vitamin.
Methods: The skin permeation study was performed by means of Franz-type diffusion cells followed by the tape stripping and retention techniques. The vitamin K1-loaded lipid core nanocapsules were obtained by the preformed polymer precipitation method and the particles were characterized.
Results: The nanocapsules presented average diameter of 211 ± 2 nm, pH of 5.7 ± 0.3, zeta potential of -14.9 ± 0.6 mV and drug content of 10.2 mg/mL (102.1%). The physical stability of the nanocapsule suspension was verified using multiple light backscattering analysis. The amount of vitamin K1 in the dermis after 8 h of drug permeation was higher when the nanocapsules were applied compared to the control. Moreover, retention in the outermost skin layer and a decrease in the skin permeation to the receptor compartment due to the nanoencapsulation were observed.
Conclusion: Thus, nanoencapsulation can lead to the selective permeation of vitamin K1 through the skin.
© 2012 John Wiley & Sons A/S.