Red blood cell transfusion: experience in a rural aeromedical transport service

Prehosp Disaster Med. 2012 Jun;27(3):231-4. doi: 10.1017/S1049023X12000659. Epub 2012 Jun 12.

Abstract

Introduction: The administration of blood products to critically ill patients can be life-saving, but is not without risk. During helicopter transport, confined work space, communication challenges, distractions of multi-tasking, and patient clinical challenges increase the potential for error. This paper describes the in-flight red blood cell transfusion practice of a rural aeromedical transport service (AMTS) with respect to whether (1) transfusion following an established protocol can be safely and effectively performed, and (2) patients who receive transfusions demonstrate evidence of improvement in condition.

Methods: A two-year retrospective review of the in-flight transfusion experience of a single-system AMTS servicing a rural state was conducted. Data elements recorded contemporaneously for each transfusion were analyzed, and included hematocrit and hemodynamic status before and after transfusion. Compliance with an established transfusion protocol was determined through structured review by a multidisciplinary quality review committee.

Results: During the study, 2,566 missions were flown with 45 subjects (1.7%) receiving in-flight transfusion. Seventeen (38%) of these transports were scene-to-facility and 28 (62%) were inter-facility. Mean bedside and in-flight times were 22 minutes (range 3-109 minutes) and 24 minutes (range 8-76 minutes), respectively. The most common conditions requiring transfusion were trauma (71%), cardiovascular (13%) and gastrointestinal (11%). An average of 2.4 liters (L) of crystalloid was administered pre-transfusion. The mean transfusion was 1.4 units of packed red blood cells. The percentages of subjects with pre- and post-transfusion systolic blood pressures of <90 mmHg were 71% and 29%, respectively. The pre- and post-transfusion mean arterial pressures were 62 mmHg and 82 mmHg, respectively. The pre- and post- transfusion mean hematocrit levels were 17.8% and 30.4%, respectively. At the receiving institution, 9% of subjects died in the Emergency Department, 18% received additional transfusion within 30 minutes of arrival, 36% went directly to the operating room, and 36% were directly admitted to intensive care. Thirty-one percent of subjects died prior to hospital discharge. There were no protocol violations or reported high-risk provider blood exposure incidents or transfusion complications. All transfusions were categorized as appropriate.

Conclusions: In this rural AMTS, transfusion was an infrequent, likely life-saving, and potentially high-risk emergent therapy. Strict compliance with an established transfusion protocol resulted in appropriate and effective decisions, and transfusion proved to be a safe in-flight procedure for both patients and providers.

MeSH terms

  • Air Ambulances*
  • Chi-Square Distribution
  • Erythrocyte Transfusion / statistics & numerical data*
  • Humans
  • Maine
  • Retrospective Studies
  • Rural Health Services*
  • Time Factors