Colonization studies may function as natural experiments and have the potential of addressing important questions about community assembly. We studied colonization for a guild of epiphytic lichens in a former treeless heathland area of 170 km2 in southwest Norway. We investigated if epiphytic lichen species richness and composition on aspen (Populus tremula) trees corresponded to a random draw of lichen individuals from the regional species pool. We compared lichen communities of isolated young (55-120 yr) and old (140-200 yr) forest patches in the heathland area to those of aspen forest in an adjacent reference area that has been forested for a long time. All thalli (lichen bodies) of 32 selected lichen species on trunks of aspen were recorded in 35 aspen sites. When data for each site category (young, old, and reference) were pooled, we found the species richness by rarefaction to be similar for reference sites and old sites, but significantly lower for young sites. The depauperated species richness of young sites was accompanied by a skew in species composition and absence of several species that were common in the reference sites. In contrast, genetic variation screened with neutral microsatellite markers in the lichen species Lobaria pulmonaria showed no significant differences between site categories. Our null hypothesis of a neutral species assembly in young sites corresponding to a random draw from the regional species pool was rejected, whereas an alternative hypothesis based on differences in colonization capacity among species was supported. The results indicate that for the habitat configuration in the heathland area (isolated patches constituting < 0.4% of the area) lichen communities may need a colonization time of 100-150 yr for species richness to level off, but given enough time, isolation will not affect species richness. We suggest that this contradiction to expectations from classical island equilibrium theory results from low extinction rates.