Fluoxetine induces vasodilatation of cerebral arterioles by co-modulating NO/muscarinic signalling

J Cell Mol Med. 2012 Nov;16(11):2736-44. doi: 10.1111/j.1582-4934.2012.01596.x.

Abstract

Ischaemic stroke patients treated with Selective Serotonin Reuptake Inhibitors (SSRI) show improved motor, cognitive and executive functions, but the underlying mechanism(s) are incompletely understood. Here, we report that cerebral arterioles in the rat brain superfused with therapeutically effective doses of the SSRI fluoxetine showed consistent, dose-dependent vasodilatation (by 1.2 to 1.6-fold), suppressible by muscarinic and nitric oxide synthase (NOS) antagonists [atropine, NG-nitro-l-arginine methyl ester (l-NAME)] but resistant to nicotinic and serotoninergic antagonists (mecamylamine, methylsergide). Fluoxetine administered 10-30 min. following experimental vascular photo-thrombosis increased arterial diameter (1.3-1.6), inducing partial, but lasting reperfusion of the ischaemic brain. In brain endothelial b.End.3 cells, fluoxetine induced rapid muscarinic receptor-dependent increases in intracellular [Ca(2+) ] and promoted albumin- and eNOS-dependent nitric oxide (NO) production and HSP90 interaction. In vitro, fluoxetine suppressed recombinant human acetylcholinesterase (rhAChE) activity only in the presence of albumin. That fluoxetine induces vasodilatation of cerebral arterioles suggests co-promotion of endothelial muscarinic and nitric oxide signalling, facilitated by albumin-dependent inhibition of serum AChE.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholinesterase / metabolism
  • Animals
  • Arterioles / drug effects*
  • Arterioles / physiology
  • Atropine / pharmacology
  • Calcium / metabolism
  • Cells, Cultured
  • Cerebral Cortex / blood supply*
  • Cerebral Cortex / drug effects
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Fluoxetine / pharmacology*
  • HSP90 Heat-Shock Proteins / metabolism
  • Male
  • Mecamylamine / pharmacology
  • Methysergide / pharmacology
  • Muscarinic Antagonists / supply & distribution
  • NG-Nitroarginine Methyl Ester / pharmacology
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase Type III / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Muscarinic / metabolism
  • Reperfusion
  • Selective Serotonin Reuptake Inhibitors / pharmacology*
  • Serotonin / metabolism
  • Signal Transduction / drug effects
  • Stroke / drug therapy
  • Stroke / metabolism
  • Vasodilation / drug effects*
  • Vasodilation / physiology

Substances

  • HSP90 Heat-Shock Proteins
  • Muscarinic Antagonists
  • Receptors, Muscarinic
  • Serotonin Uptake Inhibitors
  • Fluoxetine
  • Nitric Oxide
  • Serotonin
  • Mecamylamine
  • Atropine
  • Nitric Oxide Synthase Type III
  • Nos3 protein, rat
  • Acetylcholinesterase
  • Calcium
  • NG-Nitroarginine Methyl Ester
  • Methysergide