Ion-exchange properties of imidazolium-grafted SBA-15 toward AuCl4(-) anions and their conversion into supported gold nanoparticles

Langmuir. 2012 Jul 10;28(27):10281-8. doi: 10.1021/la301374z. Epub 2012 Jun 28.

Abstract

Imidazolium groups were successfully prepared and grafted on the surface of SBA-15 mesoporous silica. The ion-exchange properties of the functionalized porous solid (SBA-15/R(+)Cl(-)) toward AuCl(4)(-) anions were evaluated through an ion-exchange isotherm. The calculated values of the equilibrium constant (log β = 4.47) and the effective ion-exchange capacity (t(Q) = 0.79 mmol g(-1)) indicate that the AuCl(4)(-) species can be loaded and strongly retained on the functionalized surface as counterions of the imidazolium groups. Subsequently, solids containing different amounts of AuCl(4)(-) ions were submitted to a chemical reduction process with NaBH(4), converting the anionic gold species into supported gold nanoparticles. The plasmon resonance bands, the X-ray diffraction patterns, and transmission electron microscopy images of the supported gold nanoparticles before and after thermal treatment at 973 K indicate that the metal nanostructures are highly dispersed and stabilized by the host environment.