In primates, prostriata is a small area located between the primary visual cortex (V1) and the hippocampal formation. Prostriata sends connections to multisensory and high-order association areas in the temporal, parietal, cingulate, orbitofrontal, and frontopolar cortices. It is characterized by a relatively simple histological organization, alluding to an early origin in mammalian evolution. Here we show that prostriata neurons in marmoset monkeys exhibit a unique combination of response properties, suggesting a new pathway for rapid distribution of visual information in parallel with the traditionally recognized dorsal and ventral streams. Whereas the location and known connections of prostriata suggest a high-level association area, its response properties are unexpectedly simple, resembling those found in early stages of the visual processing: neurons have robust, nonadapting responses to simple stimuli, with latencies comparable to those found in V1, and are broadly tuned to stimulus orientation and spatiotemporal frequency. However, their receptive fields are enormous and form a unique topographic map that emphasizes the far periphery of the visual field. These results suggest a specialized circuit through which stimuli in peripheral vision can bypass the elaborate hierarchy of extrastriate visual areas and rapidly elicit coordinated motor and cognitive responses across multiple brain systems.
Copyright © 2012 Elsevier Ltd. All rights reserved.