Highly sensitive troponin T for risk stratification of acutely destabilized heart failure

Am Heart J. 2012 Jun;163(6):1002-10. doi: 10.1016/j.ahj.2012.03.015.

Abstract

Background: A highly sensitive assay for troponin T (hsTnT) has been recently developed, which allows for the detection of even minor myocardial necrosis with high precision. It remains unexplored whether hsTnT provides incremental prognostic accuracy beyond conventional (c)TnT in patients with acutely decompensated heart failure (ADHF).

Methods: A total of 202 consecutive patients admitted with ADHF and without criteria for acute myocardial infarction were studied. Troponin T was measured using the highly sensitive assay and compared with the conventional method. Patients were clinically followed up at a median of 406 days, with a primary outcome measure of all-cause mortality.

Results: The high-sensitive assay detected measurable TnT in 98% of patients vs 56% for cTnT; 81% had an hsTnT above the 99th percentile for a healthy reference population, and it reclassified 60% of those with undetectable cTnT. Both TnT methods predicted the risk of death in adjusted multivariable Cox regression analyses, without a superiority of hsTnT over cTnT in the entire population (area under the curve 0.67 vs 0.71, P = .2). Among patients with a cTnT below 0.03 ng/mL (the lowest cut-point with <10% imprecision; n = 134), solely hsTnT improved the prediction of death over clinical risk factors (relative integrated discrimination improvement +36%, P = .01) and hsTnT above 20 pg/mL identified a significant higher risk of death (hazard ratio 4.7, 95% CI 1.6-13.8, P = .005).

Conclusion: Among patients with ADHF, myocardial necrosis (as detected with the hsTnT assay) was nearly ubiquitous. The highly sensitive assay for TnT provides comparable prognostic information to cTnT overall, but among those in whom the cTnT method was less precise or frankly negative, the hsTnT assay provided prognostic information.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Female
  • Heart Failure / blood*
  • Humans
  • Immunoassay
  • Male
  • Myocardium / pathology
  • Necrosis
  • Prognosis
  • Risk Assessment
  • Troponin T / blood*

Substances

  • Troponin T