Genotoxicity of TiO(2) anatase nanoparticles in B6C3F1 male mice evaluated using Pig-a and flow cytometric micronucleus assays

Mutat Res. 2012 Jun 14;745(1-2):65-72. doi: 10.1016/j.mrgentox.2012.02.002.

Abstract

In vivo micronucleus and Pig-a (phosphatidylinositol glycan, class A gene) mutation assays were conducted to evaluate the genotoxicity of 10 nm titanium dioxide anatase nanoparticles (TiO(2)-NPs) in mice. Groups of five 6-7-week-old male B6C3F1 mice were treated intravenously for three consecutive days with 0.5, 5.0, and 50 mg/kg TiO(2)-NPs for the two assays; mouse blood was sampled one day before the treatment and on Day 4, and Weeks 1, 2, 4, and 6 after the beginning of the treatment; Pig-a mutant frequencies were determined at Day -1 and Weeks 1, 2, 4 and 6, while percent micronucleated-reticulocyte (%MN-RET) frequencies were measured on Day 4 only. Additional animals were treated intravenously with three daily doses of 50 mg.kg TiO(2)-NPs for the measurement of titanium levels in bone marrow after 4, 24, and 48 h of the last treatment. The measurement indicated that the accumulation of the nanoparticles reached the peak in the tissue 4 h after the administration and the levels were maintained for a few days. No increase in either Pig-a mutant frequency of the frequency of %MN-RETs was detected, although the %RETs was reduced in the treated animals on Day 4 in a dose-dependent manner indicating cytotoxicity of TiO(2)-NPs in the bone marrow. These results suggest that although TiO(2)-NPs can reach the mouse bone marrow and are capable of inducing cytotoxicity, the nanoparticles are not genotoxic when assessed with in vivo micronucleus and Pig-a gene mutation tests.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • DNA Damage / drug effects
  • Male
  • Mice
  • Mice, Inbred Strains
  • Micronucleus Tests / methods
  • Mutagens / toxicity*
  • Nanoparticles / toxicity*
  • Titanium / toxicity*

Substances

  • Mutagens
  • titanium dioxide
  • Titanium