Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements

Langmuir. 2012 Jul 17;28(28):10372-80. doi: 10.1021/la300774d. Epub 2012 Jul 3.

Abstract

Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the solution properties of APol "micelles" (in salty buffer) appear surprisingly similar to those of the micelles formed by small, nonpolymeric surfactants, a feature that was not anticipated owing to the polymeric and polydisperse nature of A8-35. The key to the remarkable stability to dilution of A8-35 globules, likely to include also that of MP/APol complexes, lies accordingly in the low value of the critical self-association concentration as compared to that of small amphiphilic analogues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Air
  • Fluorescence Resonance Energy Transfer*
  • Molecular Structure
  • Polymers / chemical synthesis
  • Polymers / chemistry*
  • Propylamines / chemical synthesis
  • Propylamines / chemistry*
  • Surface Tension
  • Surface-Active Agents / chemistry*
  • Thermodynamics*
  • Water / chemistry

Substances

  • Polymers
  • Propylamines
  • Surface-Active Agents
  • amphipol A8-35
  • Water