The application of multi-wavelength anomalous diffraction to thin films, interfaces and surface structures is presented. The method directly determines the amplitudes and phases of the complex surface structure factors from surface x-ray diffraction data, measured at three different energies around the absorption edge of one of the elements present in the film. Thereby, one is able to directly Fourier transform the data, which immediately provides meaningful and unambiguous electron-density distributions. These serve as a starting point for subsequent structural refinement. The robustness of the algorithm was evaluated on simulated data as a proof of principle. The experimental limitations and their effect on the method will be discussed as well as stability tests for the algorithm, such as the positions of the anomalous scatterers and the interfacial roughness. It will be shown that the method can be applied to real structures. The algorithm was tested on real data from a thin film of SrTiO(3) grown on NdGaO(3)(110).