Solving structure with sparse, randomly-oriented x-ray data

Opt Express. 2012 Jun 4;20(12):13129-37. doi: 10.1364/OE.20.013129.

Abstract

Single-particle imaging experiments of biomolecules at x-ray free-electron lasers (XFELs) require processing hundreds of thousands of images that contain very few x-rays. Each low-fluence image of the diffraction pattern is produced by a single, randomly oriented particle, such as a protein. We demonstrate the feasibility of recovering structural information at these extremes using low-fluence images of a randomly oriented 2D x-ray mask. Successful reconstruction is obtained with images averaging only 2.5 photons per frame, where it seems doubtful there could be information about the state of rotation, let alone the image contrast. This is accomplished with an expectation maximization algorithm that processes the low-fluence data in aggregate, and without any prior knowledge of the object or its orientation. The versatility of the method promises, more generally, to redefine what measurement scenarios can provide useful signal.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.