Transgenic zebrafish have been utilized for in vivo analysis of cell behaviors using advanced imaging techniques, for analyzing spatiotemporal gene regulation, and for targeted mis-expression of transgenes. The Tg(fli1a:EGFP)y1 vascular reporter has been particularly useful for examining the development of blood and lymphatic vessels, but it has been suggested that whole-mount in situ hybridization may result high background staining in this line, potentially limiting its usefulness. Here, we show that off-target hybridization of plasmid vector-derived probes to tissues expressing transgenes occurs in a number of different commonly used transgenic lines as a result of multiple cloning site sequences present in the cloning vectors, suggesting this may be a more general problem. However, we also show that this problem is easily avoided by performing in situ hybridization using probes synthesized from PCR templates lacking vector sequences.