Sixteen novel mononuclear Cu(II), Co(II), Zn(II), and Ni(II) complexes of the biologically active ligand clotrimazole (clotri) of the forms [M(clotri)(2)Cl(2)]·nH(2)O (1-4), [M(clotri)(2)Br(2)]·nH(2)O (5-7), [M(clotri)(3)Br(2)] (8), [M(clotri)(3)NO(3)]NO(3)·nH(2)O (9, 11), [M(clotri)(3)(NO(3))(2)]·nH(2)O (10), and [M(clotri)(3)(OH(2))(2)NO(3)]NO(3)·nH(2)O (12) were synthesized and fully characterized. Dinuclear [Cu(2)(clotri)(4)μ(2)-Cl(4)]·2H(2)O (1a) and [Cu(2)(clotri)(4)μ(2)-Br(2)]·2H(2)O (5b) as well as tetranuclear [Cu(4)(clotri)(4)μ(4)-Br(6)μ(4)-O] (5a) complexes were also isolated. Complexes 1-7, 9, and 11 present a tetrahedral geometry; complex 8 exhibits a pentacoordinated structure; complexes 1a, 10 and 12 an octahedral geometry. X-ray crystal structures of [Cu(clotri)(2)Cl(2)](1), [Cu(clotri)(2)(EtOH)Cl(2)](1·EtOH), [Zn(clotri)(2)Cl(2)] (3), [Zn(clotri)(2)Br(2)] (7), and [Cu(4)(clotri)(4)μ(4)-Br(6)μ(4)-O] (5a) were obtained. Complexes 1-12 were tested for cytotoxic activity against the human carcinoma cell lines HeLa (cervix-uterine), PC3 (prostate), and HCT-15 (colon) displaying IC(50) values <30 μM. Confocal microscopy and nuclear dying (DAPI) for complex 1 showed condensation of cromatin and nuclear membrane fragmentation. Immunocytochemical detection/expression of biomarkers suggests that complexes 1 and 9 induce cell death via apoptosis. TUNEL assay detected DNA fragmentation in HeLa cells, resulting from apoptotic signaling cascades induced by Cu(II) complexes 1 and 9. (1)H NMR studies of the Zn(II) complexes showed that they can bind to nucleotides.
Copyright © 2012 Elsevier Inc. All rights reserved.