The design and control of polymeric nanoscale network structures at the molecular level remains a challenging issue. Here we construct a novel type of polymeric nanoscale networks with a unique microporous nanofiber unit employing the intra/interbrush carbonyl cross-linking of polystyrene side chains for well-defined cylindrical polystyrene molecular bottlebrushes. The size of the side chains plays a vital role in the tuning of nanostructure of networks at the molecular level. We also show that the as-prepared polymeric nanoscale networks exhibit high specific adsorption capacity per unit surface area because of the synergistic effect of their unique hierarchical porous structures. Our strategy represents a new avenue for the network unit topology and provides a new application for molecular bottlebrushes in nanotechnology.