The aim of the present study was to investigate the potential benefits of cold water immersion (CWI) and active recovery (AR) on blood lactate concentration ([Lac]) and heart rate variability (HRV) indices following high-intensity exercise. 20 male subjects were recruited. On the first visit, an incremental test was performed to determine maximal oxygen consumption and the associated speed (MAS). The remaining 3 visits for the performance of constant velocity exhaustive tests at MAS and different recovery methods (6 min) were separated by 7-day intervals [randomized: CWI, AR or passive recovery (PR)]. The CWI and AR lowered [Lac] (p<0.05) at 11, 13 and 15 min after exercise cessation in comparison to PR. There was a 'time' and 'recovery mode' interaction for 2 HRV indices: standard deviation of normal R-R intervals (SDNN) (partial eta squared=0.114) and natural log of low-frequency power density (lnLF) (partial eta squared=0.090). CWI presented significantly higher SDNN compared to PR at 15 min of recovery (p<0.05). In addition, greater SDNN values were found in CWI vs. AR during the application of recovery interventions, and at 30 and 75 min post-exercise (p<0.05 for all differences). The lnLF during the recovery interventions and at 75 min post-exercise was greater using CWI compared with AR (p<0.05). For square root of the mean of the sum of the squares of differences between adjacent R-R intervals (RMSSD) and natural log of high-frequency power density (lnHF), a moderate effect size was found between CWI and PR during the recovery interventions and at 15 min post-exercise. Our findings show that AR and CWI offer benefits regarding the removal of [Lac] following high-intensity exercise. While limited, CWI results in some improvement in post-exercise cardiac autonomic regulation compared to AR and PR. Further, AR is not recommended if the aim is to accelerate the parasympathetic reactivation.
© Georg Thieme Verlag KG Stuttgart · New York.