The ion size-modified Poisson Boltzmann equation (SMPBE) is applied to the simple model problem of a low-dielectric spherical cavity containing a central charge, in an aqueous salt solution to investigate the finite ion size effect upon the electrostatic free energy and its sensitivity to changes in salt concentration. The SMPBE is shown to predict a very different electrostatic free energy than the nonlinear Poisson-Boltzmann equation (NLPBE) due to the additional entropic cost of placing ions in solution. Although the energy predictions of the SMPBE can be reproduced by fitting an appropriatelysized Stern layer, or ion-exclusion layer to the NLPBE calculations, the size of the Stern layer is difficult to estimate a priori. The SMPBE also produces a saturation layer when the central charge becomes sufficiently large. Ion-competition effects on various integrated quantities such the total number of ions predicted by the SMPBE are qualitatively similar to those given by the NLPBE and those found in available experimental results.