Rationale: The interpretation of stable hydrogen and oxygen isotope data in isotope hydrology relies on accurate, high-precision analytical measurements of the (2)H:(1)H and (18)O:(16)O ratios in liquid H(2)O samples.
Methods: A synthesis of the International Atomic Energy Agency (IAEA) worldwide proficiency test for analytical laboratories conducting routine analysis of δ(2)H and δ(18)O values in water (WICO2011) by isotope-ratio mass spectrometry (IRMS) and laser absorption spectroscopy (LAS) technology has been carried out.
Results: This test revealed that >96% of the 160 laboratory submissions provided acceptable results within ±2‰ for δ(2) H values and ±0.2‰ for δ(18)O values of the established reference values for four test waters, and no difference in outcomes based on IRMS vs. LAS technology was found for good performing laboratories.
Conclusions: The leading cause of outliers appeared to be improper calibration or compromised storage of laboratory standard and primary reference waters; hence the importance of judicious storage of lab standards cannot be understated. The deprecated practice of single standard normalization was identified as a problem for some laboratories. We further recommend that laboratories strive to report parsimonious long-term precisions based upon control standards, and to improve quantification and correction for LAS instrumental drift and inter-sample carryover effects.
Copyright © 2012 John Wiley & Sons, Ltd.