By inserting L-arginine lauril ester (AL) into nanostructure lipid carriers (NLCs) and then coating with bovine serum albumin (BSA), pH-sensitive membranolytic and lysosomolytic nanocarriers (BSA-AL-NLCs) were developed. Hemolysis assay demonstrated the pH-sensitive biomembrane disruptional capability of AL and BSA-AL-NLCs. BSA-AL-NLCs did not disrupt biomembrane at pH 7.4 even at high concentration, exhibited ideal feasibility as lysosomolytic drug delivery nanoparticles without cytotoxicity. Confocal Laser Scanning Microscope (CLSM) images confirmed the lysosomolytic capability of BSA-AL-NLCs after internalized into MCF-7 (human breast cancer cell) via endosome-lysosome path in vitro. Paclitaxel (PTX) loaded BSA-AL-NLCs displayed pH-dependent release in vitro. In MCF-7 viability test with MTT assays, both the blank NLCs did not exhibit cellular toxicity. Of particular interest, the in vitro cell experiments demonstrated that the anti-tumor effect of PTX-loaded BSA-AL-NLCs was preferable to BSA-NLCs, even comparable with PTX solution, which indicated that AL served to facilitate lysosomal escape of BSA-AL-NLCs so as to improve the anti-cancer effect. Biodistribution and anti-cancer activity in vivo confirmed the improved tumor targeting and anti-cancer efficacy of BSA-AL-NLCs. The study suggested that the simple and small molecule of AL may render more nanocarriers lysosomolytic capability with lower cytotoxicity, as well as improved therapeutic index of loaded active agents.
Copyright © 2012 Elsevier B.V. All rights reserved.