Optically rewritable patterns of nuclear magnetization in gallium arsenide

Nat Commun. 2012 Jun 26:3:918. doi: 10.1038/ncomms1918.

Abstract

The control of nuclear spin polarization is important to the design of materials and algorithms for spin-based quantum computing and spintronics. Towards that end, it would be convenient to control the sign and magnitude of nuclear polarization as a function of position within the host lattice. Here we show that, by exploiting different mechanisms for electron-nuclear interaction in the optical pumping process, we are able to control and image the sign of the nuclear polarization as a function of distance from an irradiated GaAs surface. This control is achieved using a crafted combination of light helicity, intensity and wavelength, and is further tuned via use of NMR pulse sequences. These results demonstrate all-optical creation of micron scale, rewritable patterns of positive and negative nuclear polarization in a bulk semiconductor without the need for ferromagnets, lithographic patterning techniques, or quantum-confined structures.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arsenicals / chemistry*
  • Electrons
  • Gallium / chemistry*
  • Optics and Photonics
  • Semiconductors

Substances

  • Arsenicals
  • gallium arsenide
  • Gallium