Temporal and spatial Bean pod mottle virus-induced gene silencing in soybean

Mol Plant Pathol. 2012 Dec;13(9):1140-8. doi: 10.1111/j.1364-3703.2012.00808.x. Epub 2012 Jun 27.

Abstract

Virus-induced gene silencing (VIGS) is a powerful reverse genetics tool in plant science. In this study, we investigated the temporal and spatial silencing patterns achieved by Bean pod mottle virus (BPMV)-based VIGS in soybean using virus constructs targeting green fluorescence protein (GFP). Silencing GFP enabled an in-depth analysis of silencing in soybean tissues over time in a transgenic line constitutively expressing GFP. We discovered evidence for variable GFP silencing based on insert orientation and targeted region in the coding sequence. A 3' sequence in reverse orientation produced the strongest silencing phenotypes. Furthermore, we documented that BPMV VIGS can achieve widespread silencing in a broad range of tissues, including leaves, stems, flowers and roots. Near-complete silencing was attained in leaves and flowers. Although weaker than in shoots, the observed gene silencing in soybean roots will also allow reverse genetics studies in this tissue. When GFP fluorescence was assayed in cross-sections of stems and leaf petioles, near-complete and uniform silencing was observed in all cell types. Silencing was observed from as early as 2 weeks post-virus inoculation in leaves to 7 weeks post-virus inoculation in flowers, suggesting that this system can induce and maintain silencing for significant durations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Comovirus / physiology*
  • Flowers / metabolism
  • Flowers / virology
  • Gene Silencing*
  • Glycine max / genetics*
  • Glycine max / virology*
  • Green Fluorescent Proteins / metabolism
  • Plant Leaves / metabolism
  • Plant Leaves / virology
  • Time Factors
  • Transgenes / genetics

Substances

  • Green Fluorescent Proteins