Energy loss spectra from fluorite-structured ZrO(2), CeO(2), and UO(2) compounds are compared with theoretical calculations based on density functional theory (DFT) and its extensions, including the use of Hubbard-U corrections (DFT + U) and hybrid functionals. Electron energy loss spectra (EELS) were obtained from each oxide using a scanning transmission electron microscope (STEM). The same spectra were computed within the framework of the full-potential linear augmented plane-wave (FLAPW) method. The theoretical and experimental EEL spectra are compared quantitatively using non-linear least squares peak fitting and a cross-correlation approach, with the best level of agreement between experiment and theory being obtained using the DFT + U and hybrid computational approaches.