Background: Pheophorbide a (Pa) is a chlorine-based photosensitizer derived from an ethnopharmacological herb, and our group recently synthesized Pa by the removal of a magnesium ion and a phytyl group from chlorophyll-a. In this study, the effect of photodynamic therapy (PDT) with synthesized Pa was examined in a human oral squamous cell carcinoma (OSCC) cells.
Methods: Cells were treated with PDT with Pa, and reactive oxygen species (ROS) and mitochondrial membrane potential [ΔΨ (m)] were examined. Apoptosis was measured using annexin V staining and immunoblot. Autophagy was characterized by the increase in LC3B-II and the formation of autophagosome and acidic vesicular organelles (AVOs).
Results: Pa-PDT inhibited the proliferation of OSCC cells in a dose-dependent manner. Pa-PDT increased the number of apoptotic cells by inactivating ERK pathway. Pa-PDT also induced autophagy in OSCC cells evidenced by the increased levels of LC3 type II expression and the accumulation of AVOs. The inhibition of autophagy enhanced Pa-PDT-mediated cytotoxicity through an increase in necrosis.
Conclusions: These results suggest that synthesized Pa-PDT exerts anti-tumor effects by inducing apoptosis and autophagy and provide novel evidence that Pa-PDT induces autophagy, and autophagy inhibition enhances Pa-PDT-mediated necrosis in OSCC cells.
© 2012 John Wiley & Sons A/S.