t(17;19)-acute lymphoblastic leukemia (ALL) shows extremely poor prognosis. E2A-HLF derived from t(17;19) blocks apoptosis induced by the intrinsic mitochondrial pathway and has a central role in leukemogenesis and chemoresistance. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is expressed on cytotoxic T cells and natural killer cells and binds with death receptors (DR4/DR5), inducing apoptosis by dual activation of intrinsic and extrinsic pathways, and TRAIL mediates the graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT). We found that cell lines and patients' samples of t(17;19)-ALL expressed death receptors for TRAIL, and recombinant soluble TRAIL immediately induced apoptosis into t(17;19)-ALL cell lines. E2A-HLF induced gene expression of DR4/DR5, which was dependent on the DNA-binding and transactivation activities of E2A-HLF through the 5' upstream region of the start site at least in the DR4 gene. Introduction of E2A-HLF into non-t(17;19)-ALL cell line upregulated DR4 and DR5 expression, and sensitized to proapoptotic activity of recombinant soluble TRAIL. Finally, a newly diagnosed t(17;19)-ALL patient underwent allo-SCT immediately after induction of first complete remission, and the patient has survived without relapse for over 3-1/2 years after allo-SCT. These findings suggest that E2A-HLF sensitizes t(17;19)-ALL to the GVL effect by upregulating death receptors for TRAIL.