Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts

Phys Chem Chem Phys. 2012 Aug 14;14(30):10572-8. doi: 10.1039/c2cp41045a. Epub 2012 Jun 28.

Abstract

After the successful solvothermal synthesis of graphene (GR) from ethanol and sodium, we obtained chemically bonded graphene/BiOCl (GR/BiOCl) nanocomposite photocatalysts via a facile chemical-bath method. A significant enhancement was observed in the photodegradation of methylbenzene, which was largely ascribed to the chemical coupling effects between Bi and C, as shown by X-ray photoelectron spectroscopy. Raman spectroscopy also indicated an increased size of the sp(2) ring clusters and decreased disorder in the graphitic structure, as substitutions of defects like vacancies as well as oxygen containing carbonaceous groups with C-Bi attachment take place. Overall, information about chemical coupling effects between GR and BiOCl might take us a step further in GR-based hybrid materials, providing a very good reference to the fabrication of chemically bonded GR/semiconductor compounds and facilitating their applications in environmental protection, photo-electrochemical conversion and photocatalytic decomposition of water.