In this work, it is shown that for the first time that, using information-entropy-based methods, one can quantitatively explore the relative impact of a wide multidimensional array of electronic and chemical bonding parameters on the structural stability of intermetallic compounds. Using an inorganic AB2 compound database as a template data platform, the evolution of design rules for crystal chemistry based on an information-theoretic partitioning classifier for a high-dimensional manifold of crystal chemistry descriptors is monitored. An application of this data-mining approach to establish chemical and structural design rules for crystal chemistry is demonstrated by showing that, when coupled with first-principles calculations, statistical inference methods can serve as a tool for significantly accelerating the prediction of unknown crystal structures.