Mixtures of Gaussian Wells: Theory, Computation, and Application

Comput Stat Data Anal. 2012 Dec 1;56(12):3809-3820. doi: 10.1016/j.csda.2012.03.027. Epub 2012 May 21.

Abstract

A primary challenge in unsupervised clustering using mixture models is the selection of a family of basis distributions flexible enough to succinctly represent the distributions of the target subpopulations. In this paper we introduce a new family of Gaussian Well distributions (GWDs) for clustering applications where the target subpopulations are characterized by hollow [hyper-]elliptical structures. We develop the primary theory pertaining to the GWD, including mixtures of GWDs, selection of prior distributions, and computationally efficient inference strategies using Markov chain Monte Carlo. We demonstrate the utility of our approach, as compared to standard Gaussian mixture methods on a synthetic dataset, and exemplify its applicability on an example from immunofluorescence imaging, emphasizing the improved interpretability and parsimony of the GWD-based model.