Two silylated BODIPY derivatives were synthesized, characterized and used for the fabrication of the dye-encapsulated silica nanoparticles. The fluorophores were covalently incorporated into the silica matrix to minimize any fluorophore leakage. The synthesized fluorophore-doped nanoparticles were stable in aqueous solution and monodisperse with diameters of 20-25 nm. By incorporating the two BODIPY dyes simultaneously at a controlled ratio, silica nanoparticles with switchable emitting wavelengths were achieved with a change in the excitation wavelength. Thus by using the dual-fluorophore-doped nanoparticles, two-color imaging was demonstrated with minimal background signal by employing an appropriate excitation light source and appropriate excitation/emission filter sets. Further, the surfaces of the dual-fluorophore-doped nanoparticles were functionalized with folic acid to allow for the recognition of HeLa cells which over-express the folate receptors.