Duck egg-drop syndrome virus (DEDSV) is a newly emerging pathogenic flavivirus causing avian diseases in China. The infection occurs in laying ducks characterized by a severe drop in egg production with a fatality rate of 5-15 %. The virus was found to be most closely related to Tembusu virus (TMUV), an isolate from mosquitoes in South-east Asia. Here, we have sequenced and characterized the full-length genomes of seven DEDSV strains, including the 5'- and 3'-non-coding regions (NCRs). We also report for the first time the ORF sequences of TMUV and Sitiawan virus (STWV), another closely related flavivirus isolated from diseased chickens. We analysed the phylogenetic and antigenic relationships of DEDSV in relation to the Asian viruses TMUV and STWV, and other representative flaviviruses. Our results confirm the close relationship between DEDSV and TMUV/STWV and we discuss their probable evolutionary origins. We have also characterized the cleavage sites, potential glycosylation sites and unique motifs/modules of these viruses. Additionally, conserved sequences in both 5'- and 3'-NCRs were identified and the predicted secondary structures of the terminal sequences were studied. Antigenic cross-reactivity comparisons of DEDSV with related pathogenic flaviviruses identified a surprisingly close relationship with dengue virus (DENV) and raised the question of whether or not DEDSV may have a potential infectious threat to man. Importantly, DEDSV can be efficiently recognized by a broadly cross-reactive flavivirus mAb, 2A10G6, derived against DENV. The significance of these studies is discussed in the context of the emergence, evolution, epidemiology, antigenicity and pathogenicity of the newly emergent DEDSV.