Increases in .VO2max with "live high-train low" altitude training: role of ventilatory acclimatization

Eur J Appl Physiol. 2013 Feb;113(2):419-26. doi: 10.1007/s00421-012-2443-4. Epub 2012 Jul 7.

Abstract

The purpose of this study was to estimate the percentage of the increase in whole body maximal oxygen consumption (.VO(2max)) that is accounted for by increased respiratory muscle oxygen uptake after altitude training. Six elite male distance runners (.VO(2max) = 70.6 ± 4.5 ml kg(-1) min(-1)) and one elite female distance runner (.VO(2max)) = 64.7 ml kg(-1) min(-1)) completed a 28-day "live high-train low" training intervention (living elevation, 2,150 m). Before and after altitude training, subjects ran at three submaximal speeds, and during a separate session, performed a graded exercise test to exhaustion. A regression equation derived from published data was used to estimate respiratory muscle .VO(2) (.VO(2RM)) using our ventilation (.VE) values. .VO(2RM) was also estimated retrospectively from a larger group of distance runners (n = 22). .VO(2max) significantly (p < 0.05) increased from pre- to post-altitude (196 ± 59 ml min(-1)), while (.VE) at .VO(2max) also significantly (p < 0.05) increased (13.3 ± 5.3 l min(-1)). The estimated .VO(2RM) contributed 37 % of Δ .VO(2max). The retrospective group also saw a significant increase in .VO(2max) from pre- to post-altitude (201 ± 36 ml min(-1)), along with a 10.8 ± 2.1 l min(-1) increase in (.VE), thus requiring an estimated 27 % of Δ .VO(2max) Our data suggest that a substantial portion of the improvement in .VO(2max) with chronic altitude training goes to fuel the respiratory muscles as opposed to the musculature which directly contributes to locomotion. Consequently, the time-course of decay in ventilatory acclimatization following return to sea-level may have an impact on competitive performance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization / physiology*
  • Altitude*
  • Athletic Performance / physiology*
  • Female
  • Humans
  • Male
  • Oxygen Consumption / physiology*
  • Pulmonary Ventilation / physiology*
  • Running / physiology*
  • Young Adult