Aims/hypothesis: The study aimed to evaluate the efficacy of recombinant adenovirus expressing αA-crystallin (Ad-αAc-Gfp) in reducing pericyte loss within retinal vasculature in early diabetes.
Methods: Diabetes was induced by streptozotocin injection into C57BL/6 mice. Ad-αAc-Gfp was delivered by intravitreous injection to the right eyes of mice 2 weeks before induction of diabetes. Vascular leakage was determined by fluorescent angiography, Evans Blue leakage assay and leucocyte adhesion test. Production of αA-crystallin was analysed by immunoblotting and double immunostaining and pericyte loss was analysed by pericyte count.
Results: Vessel leakage and pericyte loss were observed in the streptozotocin-induced diabetic retina. Decreased abundance of αA-crystallin in retinas 2 and 6 months after the induction of diabetes was confirmed by two-dimensional electrophoretic analysis, immunoblotting and RT-PCR. Double immunofluorescence staining for αA-crystallin and NG2 chondroitin sulphate proteoglycan revealed that αA-crystallin was predominantly produced in the retinal pericyte and that the number of αA-crystallin-producing pericytes decreased in the diabetic retina. Retinal infection with Ad-αAc-Gfp led to decreased pericyte loss and vascular leakage compared with control.
Conclusions/interpretation: Intravitreal delivery of Ad-αAc-Gfp protects against vascular leakage in the streptozotocin-induced model of diabetes. This effect is associated with the inhibition of diabetic retinal pericyte loss in early diabetes, suggesting that αA-crystallin has a role in preventing the pathogenesis of early diabetic retinopathy.