Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation

ACS Chem Neurosci. 2010 Apr 21;1(4):279-87. doi: 10.1021/cn900027u. Epub 2010 Jan 27.

Abstract

The fibrillation kinetics of the amyloid β peptide is analyzed in presence of cationic polystyrene nanoparticles of different size. The results highlight the importance of the ratio between the peptide and particle concentration. Depending on the specific ratio, the kinetic effects vary from acceleration of the fibrillation process by reducing the lag phase at low particle surface area in solution to inhibition of the fibrillation process at high particle surface area. The kinetic behavior can be explained if we assume a balance between two different pathways: first fibrillation of free monomer in solution and second nucleation and fibrillation promoted at the particle surface. The overall rate of fibrillation will depend on the interplay between these two pathways, and the predominance of one mechanism over the other will be determined by the relative equilibrium and rate constants.

Keywords: Amyloid; aggregation kinetics; nanoparticles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid / drug effects*
  • Amyloid / ultrastructure
  • Amyloid beta-Peptides / chemistry
  • Amyloid beta-Peptides / drug effects*
  • Benzothiazoles
  • Drug Delivery Systems
  • Fluorescent Dyes / analysis
  • Fluorometry
  • Humans
  • Microscopy, Electron
  • Nanoparticles*
  • Negative Staining
  • Nephelometry and Turbidimetry
  • Peptide Fragments / chemistry
  • Peptide Fragments / drug effects*
  • Polystyrenes / administration & dosage
  • Polystyrenes / pharmacokinetics*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / drug effects
  • Surface Properties
  • Thiazoles / analysis

Substances

  • Amyloid
  • Amyloid beta-Peptides
  • Benzothiazoles
  • Fluorescent Dyes
  • Peptide Fragments
  • Polystyrenes
  • Recombinant Proteins
  • Thiazoles
  • amyloid beta-protein (1-40)
  • amyloid beta-protein (1-42)
  • thioflavin T