Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study

Environ Sci Technol. 2012 Aug 7;46(15):8075-81. doi: 10.1021/es3002986. Epub 2012 Jul 25.

Abstract

We have examined aqueous-phase secondary organic aerosol (SOA) and organosulfate (OS) formation in atmospheric aerosols using a photochemical box model with coupled gas-phase chemistry and detailed aqueous aerosol chemistry. SOA formation in deliquesced ammonium sulfate aerosol is highest under low-NO(x) conditions, with acidic aerosol (pH = 1) and low ambient relative humidity (40%). Under these conditions, with an initial sulfate loading of 4.0 μg m(-3), 0.9 μg m(-3) SOA is predicted after 12 h. Low-NO(x) aqueous-aerosol SOA (aaSOA) and OS formation is dominated by isoprene-derived epoxydiol (IEPOX) pathways; 69% or more of aaSOA is composed of IEPOX, 2-methyltetrol, and 2-methyltetrol sulfate ester. 2-Methyltetrol sulfate ester comprises >99% of OS mass (66 ng m(-3) at 40% RH and pH 1). In urban (high-NO(x)) environments, aaSOA is primarily formed via reversible glyoxal uptake, with 0.12 μg m(-3) formed after 12 h at 80% RH, with 20 μg m(-3) initial sulfate. OS formation under all conditions studied is maximum at low pH and lower relative humidities (<60% RH), i.e., when the aerosol is more concentrated. Therefore, OS species are expected to be good tracer compounds for aqueous aerosol-phase chemistry (vs cloudwater processing).

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aerosols*
  • Atmosphere*
  • Models, Theoretical*
  • Organic Chemicals / chemistry*
  • Sulfur / chemistry*

Substances

  • Aerosols
  • Organic Chemicals
  • Sulfur