The positional specificity of EXXK motifs within an amphipathic α-helix dictates preferential lysine modification by acrolein: implications for the design of high-density lipoprotein mimetic peptides

Biochemistry. 2012 Aug 14;51(32):6400-12. doi: 10.1021/bi300626g. Epub 2012 Aug 2.

Abstract

Despite the ability of acrolein to damage proteins, factors governing its reactivity with the ε-amino group of lysine are poorly understood. We used a small 26-mer α-helical peptide (ATI-5261) to evaluate the influence of acidic glutamate (E) residues on site-specific lysine modification by acrolein and if this targeting played a major role in inhibiting the cholesterol efflux activity of the peptide. Exposure of ATI-5261 to acrolein resulted in N-(3-formyl-3,4-dehydropiperidino) (FDP)-lysine adducts at positions 5 and 25 and led to a concentration-dependent reduction in cholesterol efflux activity (55 ± 7 and 83 ± 3% decrease with 5:1 and 20:1 acrolein:peptide molar ratios, respectively). Amino acid substitution (K → R) experiments and mass spectrometry revealed neither K5 nor K25 was preferentially modified by acrolein, despite the location of K5 within a putative EXXK motif. Moreover, both lysine residues remained equally reactive when the lipidated peptide was exposed to acrolein. In contrast, placement of EXXK in the center of ATI-5261 resulted in site-specific modification of lysine. The latter was dependent on glutamate, thus establishing that acidic residues facilitate lysine modification and form the molecular basis of the EXXK motif. Preferential targeting of lysine, however, failed to augment the inhibitory effect of the aldehyde. Overall, the inhibitory effects of acrolein on cholesterol efflux activity were largely dependent on the number of lysine residue modifications and cross-linking of α-helical strands that restricted dissociation of the peptide to active forms.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters / metabolism
  • Acrolein / chemistry*
  • Acrolein / toxicity
  • Amino Acid Motifs
  • Animals
  • Apolipoprotein A-I / chemistry
  • Apolipoproteins E / chemistry
  • Cell Line
  • Cholesterol / metabolism
  • Cross-Linking Reagents / chemistry
  • Drug Design
  • Lipoproteins, HDL / chemistry*
  • Lysine / chemistry*
  • Macrophages / drug effects
  • Macrophages / metabolism
  • Mice
  • Molecular Mimicry
  • Peptides / chemistry*
  • Peptides / pharmacology

Substances

  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters
  • Apolipoprotein A-I
  • Apolipoproteins E
  • Cross-Linking Reagents
  • Lipoproteins, HDL
  • Peptides
  • Acrolein
  • Cholesterol
  • Lysine