Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity

J Exp Med. 2012 Jul 30;209(8):1419-26. doi: 10.1084/jem.20120876. Epub 2012 Jul 16.

Abstract

Ribonucleases H (RNases H) are endonucleases which cleave the RNA moiety of RNA/DNA hybrids. Their function in mammalian cells is incompletely understood. RNase H2 mutations cause Aicardi-Goutières syndrome, an inflammatory condition clinically overlapping with lupus erythematosus. We show that RNase H2 is essential in mouse embryonic development. RNase H2-deficient cells proliferated slower than control cells and accumulated in G2/M phase due to chronic activation of a DNA damage response associated with an increased frequency of single-strand breaks, increased histone H2AX phosphorylation, and induction of p53 target genes, most prominently the cyclin-dependent kinase inhibitor 1 encoding cell cycle inhibitor p21. RNase H2-deficient cells featured an increased genomic ribonucleotide load, suggesting that unrepaired ribonucleotides trigger the DNA damage response in these cells. Collectively, we show that RNase H2 is essential to remove ribonucleotides from the mammalian genome to prevent DNA damage.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Division / genetics
  • Cell Growth Processes / genetics
  • Cells, Cultured
  • Cyclin-Dependent Kinase Inhibitor p21 / genetics
  • Cyclin-Dependent Kinase Inhibitor p21 / metabolism
  • DNA / genetics*
  • DNA / metabolism*
  • DNA Breaks, Single-Stranded
  • DNA Damage
  • G2 Phase / genetics
  • Genome
  • Histones / genetics
  • Histones / metabolism
  • Interferon Type I / genetics
  • Interferon Type I / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Phosphorylation
  • RNA / genetics
  • RNA / metabolism
  • Ribonuclease H / deficiency
  • Ribonuclease H / genetics*
  • Ribonuclease H / metabolism*
  • Ribonucleotides / genetics*
  • Ribonucleotides / metabolism*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Cyclin-Dependent Kinase Inhibitor p21
  • H2AX protein, mouse
  • Histones
  • Interferon Type I
  • Ribonucleotides
  • Tumor Suppressor Protein p53
  • RNA
  • DNA
  • ribonuclease HII
  • Ribonuclease H