Several approaches exist for the quantification of proteins in complex samples processed by liquid chromatography-mass spectrometry followed by fragmentation analysis (MS2). One of these approaches is label-free MS2-based quantification, which takes advantage of the information computed from MS2 spectrum observations to estimate the abundance of a protein in a sample. As a first step in this approach, fragmentation spectra are typically matched to the peptides that generated them by a search algorithm. Because different search algorithms identify overlapping but non-identical sets of peptides, here we investigate whether these differences in peptide identification have an impact on the quantification of the proteins in the sample. We therefore evaluated the effect of using different search algorithms by examining the reproducibility of protein quantification in technical repeat measurements of the same sample. From our results, it is clear that a search engine effect does exist for MS2-based label-free protein quantification methods. As a general conclusion, it is recommended to address the overall possibility of search engine-induced bias in the protein quantification results of label-free MS2-based methods by performing the analysis with two or more distinct search engines.