Cancer is a complex, multifaceted disease. Cellular systems are perturbed both during the onset and development of cancer, and the behavioural change of tumour cells usually involves a broad range of dynamic variations. To an extent, the difficulty of monitoring the systemic change has been alleviated by recent developments in the high-throughput technologies. At both the genomic as well as proteomic levels, the technological advances in microarray and mass spectrometry, in conjunction with computational simulations and the construction of human interactome maps have facilitated the progress of identifying disease-associated genes. On a systems level, computational approaches developed for network analysis are becoming especially useful for providing insights into the mechanism behind tumour development and metastasis. This review emphasizes network approaches that have been developed to study cancer and provides an overview of our current knowledge of protein-protein interaction networks, and how their systemic perturbation can be analysed by two popular network simulation methods: Boolean network and ordinary differential equations.