Objectives: This study sought to determine the time dependency of the endothelium-dependent and -independent vascular responses after percutaneous coronary intervention (PCI) with drug-eluting (DEB) or plain balloons, bare-metal (BMS), and drug-eluting (DES) stents, or controls.
Background: Long-term endothelial dysfunction after DES implantation is associated with delayed healing and late thrombosis.
Methods: Domestic pigs underwent PCI using DEB or plain balloon, BMS, or DES. The dilated and stented segments, and the proximal reference segments of stents and control arteries were explanted at 5-h, 24-h, 1-week, and 1-month follow-up (FUP). Endothelin-induced vasoconstriction and endothelium-dependent and -independent vasodilation of the arterial segments were determined in vitro and were related to histological results.
Results: DES- and BMS-treated arteries showed proneness to vasoconstriction 5 h post-PCI. The endothelium-dependent vasodilation was profoundly (p < 0.05) impaired early after PCI (9.8 ± 3.7%, 13.4 ± 9.2%, 5.7 ± 5.3%, and 7.6 ± 4.7% using plain balloon, DEB, BMS, and DES, respectively), as compared with controls (49.6 ± 9.5%), with slow recovery. In contrast to DES, the endothelium-related vasodilation of vessels treated with plain balloon, DEB, and BMS was increased at 1 month, suggesting enhanced endogenous nitric oxide production of the neointima. The endothelium-independent (vascular smooth muscle-related) vasodilation decreased significantly at 1 day, with slow normalization during FUP. All PCI-treated vessels exhibited imbalance between vasoconstriction-vasodilation, which was more pronounced in DES- and BMS-treated vessels. No correlation between histological parameters and vasomotor function was found, indicating complex interactions between the healing neoendothelium and smooth muscle post-PCI.
Conclusions: Coronary arteries treated with plain balloon, DEB, BMS, and DES showed time-dependent loss of endothelial-dependent and -independent vasomotor function, with imbalanced contraction/dilation capacity.
Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.