We evaluate novel magnetic resonance imaging (MRI) and positron emission tomography (PET) quantitative imaging biomarkers and associated multimodality, serial-time-point analysis methodologies, with the ultimate aim of providing clinically feasible, predictive measures for early assessment of response to cancer therapy. A focus of this work is method development and an investigation of the relationship between the information content of the two modalities. Imaging studies were conducted on subjects who were enrolled in glioblastoma multiforme (GBM) therapeutic clinical trials. Data were acquired, analyzed and displayed using methods that could be adapted for clinical use. Subjects underwent dynamic [(18)F]fluorothymidine (F-18 FLT) PET, sodium ((23)Na) MRI and 3-T structural MRI scans at baseline (before initiation of therapy), at an early time point after beginning therapy and at a late follow-up time point after therapy. Sodium MRI and F-18 FLT PET images were registered to the structural MRI. F-18 FLT PET tracer distribution volumes and sodium MRI concentrations were calculated on a voxel-wise basis to address the heterogeneity of tumor physiology. Changes in, and differences between, these quantities as a function of scan timing were tracked. While both modalities independently show a change in tissue status as a function of scan time point, results illustrate that the two modalities may provide complementary information regarding tumor progression and response. Additionally, tumor status changes were found to vary in different regions of tumor. The degree to which these methods are useful for GBM therapy response assessment and particularly for differentiating true progression from pseudoprogression requires additional patient data and correlation of these imaging biomarker changes with clinical outcome.
Copyright © 2012 Elsevier Inc. All rights reserved.