Grapevine leafroll disease (GLRD) is one of the most economically important virus diseases of grapevine (Vitis spp.) worldwide. In this study, we used high-throughput sequencing of cDNA libraries made from small RNAs (sRNAs) to compare profiles of sRNA populations recovered from own-rooted Merlot grapevines with and without GLRD symptoms. The data revealed the presence of sRNAs specific to Grapevine leafroll-associated virus 3, Hop stunt viroid (HpSVd), Grapevine yellow speckle viroid 1 (GYSVd-1) and Grapevine yellow speckle viroid 2 (GYSVd-2) in symptomatic grapevines and sRNAs specific only to HpSVd, GYSVd-1 and GYSVd-2 in nonsymptomatic grapevines. In addition to 135 previously identified conserved microRNAs in grapevine (Vvi-miRs), we identified 10 novel and several candidate Vvi-miRs in both symptomatic and nonsymptomatic grapevine leaves based on the cloning of miRNA star sequences. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected conserved Vvi-miRs indicated that individual members of an miRNA family are differentially expressed in symptomatic and nonsymptomatic leaves. The high-resolution mapping of sRNAs specific to an ampelovirus and three viroids in mixed infections, the identification of novel Vvi-miRs and the modulation of certain conserved Vvi-miRs offers resources for the further elucidation of compatible host-pathogen interactions and for the provision of ecologically relevant information to better understand host-pathogen-environment interactions in a perennial fruit crop.
© 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.