Reconstruction of long-segment tracheal stenosis remains problematic. Ex vivo transplantation of stem cell-derived tracheas has been established in humans using external tissue bioreactors. These bioreactors, however, are not widely accessible. Thus, we are developing a rotational flap-based "internal bioreactor" to allow in vivo stem cell engraftment in a pre-vascularized recipient bed. This muscle will also then serve as a carrier for the transplanted trachea during rotation into position for airway reconstruction. Herein, we present a study investigating the feasibility of two pedicle muscle flaps for implantation and subsequent tracheal transplantation. Trapezius and latissimus flaps were raised using established surgical techniques. The length and width of each flap, along with the distance from the pedicle takeoff to the trachea, were measured. The overall ability of the flaps to reach the trachea was assessed. Twelve flaps were raised in 5 fresh adult human cadavers. For the trapezius flap, averages were: flap length of 16.4 cm, flap width of 5.95 cm at the tip, and distance from the pedicle takeoff to the trachea of 11.1 cm. For the latissimus dorsi flap, averages were: flap length of 35.4 cm, flap width of 7.25 cm at the tip, and distance from the pedicle takeoff to the trachea of 27.3 cm. All flaps showed sufficient durability and rotational ability. Our results show that both trapezius and latissimus dorsi flaps can be transposed into the neck to allow tension-free closure of tracheal defects. For cervical tracheal transplantation, both flaps are equally adequate. We believe that trapezius and latissimus dorsi muscle flaps are potential tracheal implantation beds in terms of vascular supply, durability, and rotational ability.