We report low-temperature, magnetotransport measurements of ferrocene-doped Bi(2)Se(3) nanoribbons grown by vapor-liquid-solid method. The Kondo effect, a saturating resistance upturn at low temperatures, is observed in these ribbons to indicate presence of localized impurity spins. Magnetoconductances of the ferrocene-doped ribbons display both weak localization and weak antilocalization, which is in contrast with those of undoped ribbons that show only weak antilocalization. We show that the observed magnetoconductances are governed by a one-dimensional localization theory that includes spin orbit coupling and magnetic impurity scattering, yielding various scattering and dephasing lengths for Bi(2)Se(3). The power law decay of the dephasing length on temperature also reflects one-dimensional localization regime in these narrow Bi(2)Se(3) nanoribbons. The emergence of weak localization in ferrocene-doped Bi(2)Se(3) nanoribbons presents ferrocene as an effective magnetic dopant source.