Background: There is increasing evidence that neurocognitive dysfunction is associated with the different states in Bipolar Disorder. Gamma coherence is strongly related to cognitive processes and cortico-cortical communication. This paper aims at shedding light on the relationship between cortical gamma coherence within bipolar patients and a control group during a prosaccadic attention task. We hypothesized that gamma coherence oscillations act as a main neural mechanism underlying information processing which changes in bipolar patients.
Method: Thirty-two (12 healthy controls and 20 bipolar patients) subjects were enrolled in this study. The subjects performed a prosaccadic attention task while their brain activity pattern was recorded using quantitative electroencephalography (20 channels).
Results: We observed that the maniac group presented lower saccade latency when compared to depression and control groups. The main finding was a greater gamma coherence for control group in the right hemisphere of both frontal and motor cortices caused by the execution of a prosaccadic attention task.
Limitations: The findings need to be confirmed in larger samples and in bipolar patients before start the pharmacological treatment.
Conclusions: Our findings suggest a disrupted connection of the brain's entire functioning of maniac patients and represent a deregulation in cortical inhibitory mechanism. Thus, our results reinforce our hypothesis that greater gamma coherence in the right and left frontal cortices for the maniac group produces a "noise" during information processing and highlights that gamma coherence might be a biomarker for cognitive dysfunction during the manic state.
Copyright © 2012 Elsevier B.V. All rights reserved.