Optimal field-splitting algorithm in intensity-modulated radiotherapy: evaluations using head-and-neck and female pelvic IMRT cases

Med Dosim. 2013 Spring;38(1):12-7. doi: 10.1016/j.meddos.2012.05.001. Epub 2012 Jul 25.

Abstract

To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H&N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H&N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, and dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H&N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average -9.7 ± 14.6% (-15 ± 25 MU) and -10.3 ± 16.3% (-3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Female
  • Head and Neck Neoplasms / radiotherapy*
  • Humans
  • Male
  • Pelvic Neoplasms / radiotherapy*
  • Radiometry / methods*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Computer-Assisted / methods*
  • Radiotherapy, Conformal / methods*
  • Retrospective Studies
  • Treatment Outcome