Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizing the flight vector. There are infinite escape vectors away from a noxious source, in contrast to a single best tracking vector towards an attractive source. Attractive and aversive odors are segregated into parallel neuronal pathways in flies; therefore, the behavioral algorithms for avoidance may be categorically different from tracking. Do flies plot random ballistic or otherwise variable escape vectors? Or do they instead make use of temporally dynamic mechanisms for continuously and directly avoiding noxious odors in a manner similar to tracking appetitive ones? We examine this question using a magnetic tether flight simulator that permits free yaw movements, such that flies can actively orient within spatially defined odor plumes. We show that in-flight aversive flight behavior shares all of the key features of attraction such that flies continuously 'anti-track' the noxious source.