Hyperfiltration and effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus

Am J Physiol Regul Integr Comp Physiol. 2012 Oct 1;303(7):R710-8. doi: 10.1152/ajpregu.00286.2012. Epub 2012 Aug 1.

Abstract

Studies of experimental diabetes mellitus (DM) suggest that increased nitric oxide (NO) bioactivity contributes to renal hyperfiltration. However, the role of NO in mediating hyperfiltration has not been fully elucidated in humans. Our aim was to examine the effect of NO synthase inhibition on renal and peripheral vascular function in normotensive subjects with uncomplicated type 1 DM. Renal function and brachial artery flow-mediated vasodilatation (FMD) were measured before and after an intravenous infusion of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NMMA) in 21 healthy control and 37 type 1 DM patients. Measurements in DM participants were made under clamped euglycemic conditions. The effect of l-NMMA on circulating and urinary NO metabolites (NO(x)) and cGMP and on urinary prostanoids was also determined. Baseline characteristics were similar in the two groups. For analysis, the DM patients were divided into those with hyperfiltration (DM-H, n = 18) and normal glomerular filtration rate (GFR) levels (DM-N, n = 19). Baseline urine NO(x) and cGMP were highest in DM-H. l-NMMA led to a decline in GFR in DM-H (152 ± 16 to 140 ± 11 ml·min(-1)·1.73 m(-2)) but not DM-N or healthy control participants. The decline in effective renal plasma flow in response to l-NMMA (806 ± 112 to 539 ± 80 ml·min(-1)·1.73 m(-2)) in DM-H was also exaggerated compared with the other groups (repeated measures ANOVA, P < 0.05), along with declines in urinary NO(x) metabolites and cGMP. Baseline FMD was lowest in DM-H compared with the other groups and did not change in response to l-NMMA. l-NMMA reduced FMD and plasma markers of NO bioactivity in the healthy control and DM-N groups. In patients with uncomplicated type 1 DM, renal hyperfiltration is associated with increased NO bioactivity in the kidney and reduced NO bioactivity in the systemic circulation, suggesting a paradoxical state of high renal and low systemic vascular NO bioactivity.

Publication types

  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brachial Artery / drug effects
  • Brachial Artery / physiology
  • Cyclic AMP / metabolism
  • Diabetes Mellitus, Type 1 / metabolism
  • Diabetes Mellitus, Type 1 / physiopathology*
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / physiology*
  • Female
  • Glomerular Filtration Rate / drug effects*
  • Glomerular Filtration Rate / physiology
  • Humans
  • Infusions, Intravenous
  • Kidney / drug effects
  • Kidney / physiology*
  • Male
  • Nitric Oxide / antagonists & inhibitors*
  • Nitric Oxide / metabolism
  • Nitric Oxide Synthase / antagonists & inhibitors*
  • Renal Circulation / drug effects
  • Renal Circulation / physiology
  • Vasodilation / drug effects
  • Vasodilation / physiology
  • omega-N-Methylarginine / administration & dosage
  • omega-N-Methylarginine / pharmacology*

Substances

  • omega-N-Methylarginine
  • Nitric Oxide
  • Cyclic AMP
  • Nitric Oxide Synthase