We report on oxygen binding to partially oxidized (aquomet) hemoglobin. The fractional saturation with oxygen is evaluated by deconvoluting the optical absorption spectra, in the 500-700 nm wavelength region, in terms of oxyhemoglobin, deoxyhemoglobin and methemoglobin spectral components. Experiments have been performed with auto-oxidized samples and with samples obtained by mixing ferrous hemoglobin with fully oxidized hemoglobin (mixed samples). An increase in oxygen affinity and a decrease in cooperativity are observed on increasing the amount of ferric hemoglobin in the sample. A high cooperativity (nH approximately 2) is maintained even in the presence of 50-60% ferric hemes. Moreover, for equal amounts of methemoglobin the oxygen affinity is lower and the cooperativity higher for mixed samples than for those auto-oxidized. The results are analyzed within the framework of a modified Monod-Wyman-Changeux allosteric model taking into account the effects brought about by the presence of oxidized hemes and of alpha betta dimers. The distribution of ferric subunits within the tetramers in fully deoxygenated and fully oxygenated samples, as derived from the model, provides details on the cooperative behavior of partially oxidized hemoglobin.