Vitamin B6 is a cofactor in numerous biologic processes that include gluconeogenesis, neurotransmitter synthesis and amino acid metabolism. The aim of this study was to develop a method to measure the concentration of the biologically active form of vitamin B6 (pyridoxal-5'-phosphate, PLP) in whole blood with stable isotope dilution LC-ESI-MS/MS and compare this new procedure with an established HPLC method based on derivatization of pyridoxal-5'-phosphate. 50 μl of stable isotope (PLP-d3) was added to 250 μl of sample, followed by deproteinization with 10% trichloroacetic acid. After centrifugation, 20 μl of the supernatant was injected into the LC-ESI-MS/MS. Reversed phase chromatography was performed on a UPLC system, using a Waters™ Symmetry C18 column, with a gradient of 0.1% formic acid in methanol. PLP was measured on a tandem MS with a mass transition of 247.8>149.8 in the positive ion mode with a collision energy of 14 eV. The chromatographic run lasted 4 min. The method was linear from 4 to 8000 nmol/l. The intra-day and inter-day precision ranged between 1.7-2.8% and 3.0-4.1%, respectively. The mean absolute matrix-effect was 99.3% [97-102%]. The relative matrix-effect was 98.8%. The mean recovery was 98% [89-103%]. The lower limit of quantification was 4 nmol/l. The comparison of the LC-ESI-MS/MS method with our current HPLC method yielded the following equation: LC-ESI-MS/MS=1.11 [confidence interval, CI: 1.03-1.20] × HPLC+4.6 [CI: -1.3 to 11.0] (r²=0.94). This LC-ESI-MS/MS based method is characterized by simple sample processing and a short run time. The comparison with the current HPLC method is excellent although a significant proportional bias was detected. To conclude, the LC-ESI-MS/MS method is an appropriate method to determine PLP in whole blood.
Copyright © 2012 Elsevier B.V. All rights reserved.