The interaction of salt (0%, 1.5%, and 3% in the final product) and a high-pressure treatment (500 MPa, 20 °C, 6 min) was investigated using pork biceps femoris muscle. The Warner-Bratzler shear force and the water holding capacity (WHC) were assessed and linked to the microstructure evaluation by environmental scanning electronic microscopy (ESEM). Pressure-treated and cooked samples showed a high Warner-Bratzler shear force with a low WHC compared to control cooked samples. These negative effects could be linked to the general shrinkage of the structure as observed by ESEM. The addition of 1.5% salt was sufficient to improve the technological properties of the high-pressure-treated samples and to counteract the negative effect of high pressure on texture and WHC. This phenomenon could be linked to the breakdown in structure observed by ESEM. This study states that it is possible to produce pressurized pork products of good eating quality by adding limited salt levels.
© 2012 Institute of Food Technologists®