The molecular mechanisms of neuronal morphology and synaptic vesicle transport have been largely elusive, and only a few of the molecules involved in these processes have been identified. Here, we developed a novel morphology-based gene trap method, which is theoretically applicable to all cell lines, to easily and rapidly identify the responsible genes. Using this method, we selected several gene-trapped clones of rat pheochromocytoma PC12 cells, which displayed abnormal morphology and distribution of synaptic vesicle-like microvesicles (SLMVs). We identified several genes responsible for the phenotypes and analyzed three genes in more detail. The first gene was BTB/POZ domain-containing protein 9 (Btbd9), which is associated with restless legs syndrome. The second gene was cytokine receptor-like factor 3 (Crlf3), whose involvement in the nervous system remains unknown. The third gene was single-stranded DNA-binding protein 3 (Ssbp3), a gene known to regulate head morphogenesis. These results suggest that Btbd9, Crlf3, and Ssbp3 regulate neuronal morphology and the biogenesis/transport of synaptic vesicles. Because our novel morphology-based gene trap method is generally applicable, this method is promising for uncovering novel genes involved in the function of interest in any cell lines.