SpecNet: a spatial network algorithm that generates a wide range of specific structures

PLoS One. 2012;7(8):e42679. doi: 10.1371/journal.pone.0042679. Epub 2012 Aug 2.

Abstract

Network measures are used to predict the behavior of different systems. To be able to investigate how various structures behave and interact we need a wide range of theoretical networks to explore. Both spatial and non-spatial methods exist for generating networks but they are limited in the ability of producing wide range of network structures. We extend an earlier version of a spatial spectral network algorithm to generate a large variety of networks across almost all the theoretical spectra of the following network measures: average clustering coefficient, degree assortativity, fragmentation index, and mean degree. We compare this extended spatial spectral network-generating algorithm with a non-spatial algorithm regarding their ability to create networks with different structures and network measures. The spatial spectral network-generating algorithm can generate networks over a much broader scale than the non-spatial and other known network algorithms. To exemplify the ability to regenerate real networks, we regenerate networks with structures similar to two real Swedish swine transport networks. Results show that the spatial algorithm is an appropriate model with correlation coefficients at 0.99. This novel algorithm can even create negative assortativity and managed to achieve assortativity values that spans over almost the entire theoretical range.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Animals
  • Computer Simulation
  • Models, Theoretical*
  • Software*
  • Swine
  • Transportation

Grants and funding

This work was partially funded by the Swedish Civil Contingencies Agency (MSB), and the authors also received support from the Foreign Animal Disease Modeling program of the Science and Technology Directorate, Department of Homeland Security (grant ST-108-000017). No additional external funding received for this study. The funders had no role in study design, analysis, decision to publish, or preparation of the manuscript.